
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP014803
TITLE: Fragmentation Under the Scaling Symmetry and Turbulent Cascade
with Intermittency

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Annual Research Briefs - 2003 [Center for Turbulence Research]

To order the complete compilation report, use: ADA420749

The component part is provided here to allow users access to individually authored sections
of proceedings, annals, symposia, etc. However, the component should be considered within
[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP014788 thru ADP014827

UNCLASSIFIED



Center for Turbulence Research 197
Annual Research Briefs 2003

Fragmentation under the scaling symmetry and
turbulent cascade with intermittency

By M. Gorokhovski t

1. Motivation and objectives
Fragmentation plays an important role in a variety of physical, chemical, and geo-

logical processes. Examples include atomization in sprays, crushing of rocks, explosion
and impact of solids, polymer degradation, etc. Although each individual action of frag-
mentation is a complex process, the number of these elementary actions is large. It is
natural to abstract a simple 'effective' scenario of fragmentation and to represent its
essential features. One of the models is the fragmentation under the scaling symmetry:
each breakup action reduces the typical length of fragments, r • ar, by an independent
random multiplier a (0 < a < 1), which is governed by the fragmentation intensity spec-
trum q(a), fo' q(a)da = 1. This scenario has been proposed by Kolmogorov (1941), when
he considered the breakup of solid carbon particle. Describing the breakup as a random
discrete process, Kolmogorov stated that at latest times, such a process leads to the
log-normal distribution. In Gorokhovski & Saveliev (2003), the fragmentation under the
scaling symmetry has been reviewed as a continuous evolution process with new features
established.

The objective of this paper is twofold. First, the paper synthesizes and completes theo-
retical part of Gorokhovski & Saveliev (2003). Second, the paper shows a new application
of the fragmentation theory under the scale invariance. This application concerns the tur-
bulent cascade with intermittency. We formulate here a model describing the evolution of
the velocity increment distribution along the progressively decreasing length scale. The
model shows that when the turbulent length scale gets smaller, the velocity increment
distribution has central growing peak and develops stretched tails. The intermittency in
turbulence is manifested in the same way: large fluctuations of velocity provoke highest
strain in narrow (dissipative) regions of flow.

2. Universalities of fragmentation under the scaling symmetry

2.1. The evolution equation for normalized distribution of fragments and its steady-state
solution

The population balance in the case of fragmentation under the scaling symmetry evolves
according to the following integro-differential equation (see, for example, Gorokhovski &
Saveliev (2003)):

of
T- = (1+ - 1W (2.1)
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where f(r, t) is the normalized distribution of size, v is constant breakup frequency,
fo f(r)dr = 1 and

1 f== q( ) a) ) (2.2)

is the operator of fragmentation. To fulfill the evolution of distribution with time, we
consider q(a) to be different from delta function. The ultimate steady-state solution of
equation (2.1) is delta function:

f(r) = 6(r) (2.3)
To get (2.3), remark that I+6(r)= f' &q(a)6 (L) = 6(r), and then from (+ - 1) f =

0, it follows that I+6(r) - 6(r) = 0. The question is: How does the distribution f(r, t)
evolve to the ultimate steady-state solution (2.3)? This question can not be completely
answered since the solution of the evolution equation (2.1) requires knowledge of the
spectrum q(a), which is principally unknown function. At the same time, the operator
I4 in equation (2.1) is invariant under the group of scaling transformations (r --+ ar).
Due to this symmetry, the evolution of the distribution f(r, t) to the ultimate steady-
state solution (2.3) goes at least, through two intermediate asymptotics. Evaluating these
intermediate asymptotics does not require knowledge of entire function q(a) - only its first
two logarithmic moments, and further only the ratio of these moments in the long-time
limit, determine the behavior of the solution to equation (2.1). These two universalities
are shown as follows.

2.2. First and second universalities

The asymptotic solution of (2.1) is (Gorokhovski & Saveliev 2003):

1 1 ( a ) 2
f(r,t --- oo) = 2,jln2ý-)vt exp (2n a)V

S(ln(r/R))
2 )(R) 1-(lna)/(ln a)

x exp 2 a) Vt (2.4)

where R denotes the initial length scale. The expression (2.4) confirms the main result
of Kolmogorov (1941): the long-time limit distribution is log-normal (first universality
with two parameters, which are the first and the second logarithmic moments of the frag-
mentation intensity spectrum). At the same time, it is seen from (2.4), that the second
multiplier tends to unity as time progresses. This implies that only one universal param-
eter, T , controls the last stage of the fragmentation process (second universality):

f (r, t) cc (1-?.~ (2.5)

2.3. First universality and Fokker-Planck equation

The emerging corollary from the first universality is as follows: changing of higher mo-
ments Klnk Q), k > 2 in equation (2.1) does not affect its solution at times sufficiently

larger than the life time of the breaking fragment. Then the moments (lnk a), k > 2 can

be simply equated to zero (rather than making the broadly-used assumption about the
smallness of latest). Consequently, by expanding f W on powers of Ina in (2.1), and
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FIGURE 1. Size distributions computed by direct modeling of the evolution equation with pre-
sumed Gaussian spectrum of breakup intensity, qi(a), (on the left-side) and by analitical solution
of Fokker-Planck equation with (In a) and (hn2 a) taken from presumed q(a).

by setting to zero the third and all higher logarithmic moments, the evolution equation
(2.1) reduces exactly to the Fokker-Planck equation (Gorokhovski & Saveliev 2003):=[ rln) 10

Of(r) (Ina)(In2 +) vf (r) (2.6)

or in terms of logarithm of size distribution D(x = ln r), one yields:

Of(x) _ I (in a) + (In2 +1 2 v4(x) (2.7)

The solution of (2.6) verifies to be:

f(r,t) =lr + ( 1 ep 2 fo(ro)dro (2.8)

r J 0  ir (ln2 a) vt 2 2(in 2 a) vt J

where fo(ro) is the initial distribution.
If q(a) is presumed, we can compare the Monte-Carlo simulation of the evolution

equation (2.1) with analytical solution (2.8), where (in a) and (In2 a) are calculated from
the presumed q(a). In Fig.1, on the left hand-side, we show the distribution from Monte
Carlo computation of (2.1) at different non-dimensional time vt, with q(a) presumed as
Gaussian; (ina) = -0.36 and (In2 a) = 0.14. The same moments have been prescribed
in (2.8) to compute the evolution of distribution by Fokker-Planck equation (right hand-
side of Fig.1). It is seen that at vt = 1.1 and later, the Monte Carlo simulation of (2.1)
and analytical solution of Fokker-Planck equation (2.8) match each other. We performed
such a comparison using different shapes of q(a) and the emerging picture shows that
after a certain time (the weaker the spectrum of breakup intensity is, the larger this time
is), the Monte Carlo solution of the evolution equation and the analytical solution of
Fokker-Planck equation were practically the same.
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2.4. Second universality, fractals and Boltzman distribution. Identification of (in a)

The power distribution (2.5) implies the fractal properties of formed fragments in the
long-time limit. The dimension of such a fractal object is defined by the ratio (In• a)"

Setting in (2.5) x = In r, one yields:

4(x) = r f(r, t) cc e-f (2.9)

where
h (in.10)

(In a) (2.10)

From (2.9), one can see that in the fragmentation process, the asymptotic power distri-
bution (2.5) plays the same role as the Boltzmann distribution in problems of statistical
physics. This gives an idea for the choice of -" ') by making use of the theory of Einstein(n7 a)
on the Brownian motion. In this theory, the coefficient of diffusion in the Fokker-Planck
equation is represented by the product mobilityx energy, while the drift velocity is given
by the product mobilityxforce. The ratio characterizes the typical length scale. In this
spirit, making analogy with (2.7), one gives for the normalized typical length scale r.:

(in) =- In r (2.11)

(Ina) (ro )
This scale may characterize the dominant mechanism of the cascade fragmentation (an
example of r, can be found in Gorokhovski (2001)).

3. Application to the turbulent cascade with intermittency
The cascade in isotropic turbulence with intermittency in the velocity field may also be

viewed in the framework of fragmentation under the scaling symmetry. Here, the energy
of larger unstable eddies is transferred to smaller one at a fluctuating rate. It is clear that
controlling of each elementary breakup of eddy is useless and impossible task, since the
number of degrees of freedom to produce each turbulent structure is very large. The very
simple way is again, to assume that at each repetitive step of cascade, the probability
to find the velocity scale of a 'daughter' eddy is independent of the velocity scale of its
'mother' eddy; i.e. when the turbulent length scale r gets smaller, the velocity increment,
Arv(x) = Jv(x + r) - v(x)I, is changed by independent positive random multiplier:

A/v = aA/ v, with r < l (3.1)

The formulation (3.1) is similar to Castaign et al. (1990), Castaign et al. (1993), Castaign
(1996), Kahalerras et al. (1997), Naert et al. (1998). In these papers, the measurements
of statistics of the velocity increment at the progressively reduced length scale showed
distributions with stretched tails and sharp central peak, i.e. at small length scales, the
small amplitude events alternate with events of strong velocity variation. This provokes
effect of intermittency: highest strain in narrow regions of flow. By Taylor's hypothesis of
'frozen turbulence', it is traditional to evaluate the velocity increment by one-point mea-
surement of the velocity time increment. Consequently, the penetration towards smaller
scale in the turbulent cascade may be viewed as evolution 'in time' by: Ti = ln(Lit/li)
(Friedrich & Peinke 1997), where Lint is integral length scale and li is the eddy scale.
Then we may compare equation (2.8) with measured distribution of the velocity incre-
ment for different length scales. Another way, is to compare equations (2.8) and (2.11)
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FIGURE 2. Evolution of the flatness factor K(7r) = ((A/v) 4) /((Arv)2)2 - 3 for the PDF of

the time velocity increment (continuous line: model; symbol: Mordant et al. (2001)).

directly with Lagrangian velocity statistics measured by Mordant et al. (2001) in fully
developed turbulence. Assuming that at integral time scale, the distribution of the ve-

locity increment is Gaussian (see, for example, Obukhov's (1959) Lagrangian theory of

isotropic turbulence), the expression (2.8) can be written as:

f(A v,r) = 1 x

1n &V (i + (Ina)r.2
10 ? (1n a)v-T exp 2 (n V ) ]Gauss((AV)d(/LV) (3.2)

where r. is assumed here to be ln(Tjnt/,r) (Tint is integral time scale and 7 is eddy
turbulent time scale). The crucial problem in (3.2) concerns definition of (ln 2 a) and

(In a). It has been recognized in two recent papers of Lundgren (2002) and Gange et
al. (2003), that the typical turbulent length scale, at which Kolmogorov's scaling takes

place at finite large Reynolds number, is close to Taylor micro-scale, A. In this spirit,

the expression (2.11) is formulated here as: (In 2 a)/ (Ina) = ln(A/Lint) and further

(Ina) = const , ln(A/L,,t). In Fig. 3, the computed PDF's of the velocity increment are

shown against measurements of Mordant et al. (2001) for Re,\ = 740; vrm, = 0.98 m/s;
Tint = 23 ms; Tr, = 0.2 ms (variations have been normalized to unit variance in order

to emphasize changes in the functional form). Without special fit to each experimental

profile (computation requires only one constant giving a good fit to the experimental

evolution of the flatness parameter, Fig. 2), it is seen that expression (3.2) is in agreement

with the measured PDF. The computed PDF's reproduce the progressive non-Gaussianity

with development of stretched tails as time increment becomes smaller.

4. Conclusion and future work

The main result in this paper concerns formulation of the turbulent cascade with in-
termittency in the framework of the fragmentation theory with scale invariance. The

model of evolution of the velocity increment distribution along the progressively decreas-
ing length scale is proposed. The Monte Carlo simulation of the evolution equation with
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FIGURE 3. Experimental from Mordant et al. (2001) (upper part) and corresponding modeled
(bottom part) PDF of the normalized increment A,-v/ ((/k-v)2)'/ 2 at ReA = 740. The curves

are shifted for clarity. From top to bottom: •- = 0.15; 0.3; 0.6; 1.2; 2.5; 5; 10; 20; 23 mns..

presumed fragmentation spectrum showed that the solution matches the Fokker-Planck
approximation. We showed that the long-time evolution towards fractals is similar to the
Boltzmann distribution in the statistical physics. This allowed to represent the ratio of
two first logarithmic moments of the fragmentation intensity spectrum as a typical scale,
at which the cascade fragmentation is manifested. The distribution of velocity increment
showed that when the turbulent length scale gets smaller, this distribution has central

growing peak and develops stretched tails. This is similar to what we know on the in-
termittency in turbulence from papers of Castaign et al. (1990, 1993, 1996, 1997, 1998).
In addition, the model proposed can be readily applied in LES computation of turbulent
intermittent flow with dispersed particles. In such computation we often need to predict
the flow properties at scales substantially smaller than the grid size. The knowledge of the
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velocity increment at these scales may improve simulation of light particles dispersion,
droplet evaporation involving blowing effects, and sub-grid vapor/air mixing.
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